Automatic recognition of serial numbers in bank notes
نویسندگان
چکیده
This paper presents a new topic of automatic recognition of bank note serial numbers, which will not only facilitate the prevention of forgery crimes, but also have a positive impact on the economy. Among all the different currencies, we focus on the study of RMB (renminbi bank note, the paper currency used in China) serial numbers. For evaluation, a new database NUST-RMB2013 has been collected from scanned RMB images, which contains the serial numbers of 35 categories with 17,262 training samples and 7000 testing samples in total. We comprehensively implement and compare two classic and one newly merged feature extraction methods (namely gradient direction feature, Gabor feature, and CNN trainable feature), four different types of well-known classifiers (SVM, LDF, MQDF, and CNN), and five multiple classifier combination strategies (including a specially designed novel cascade method). To further improve the recognition accuracy, the enhancements of three different kinds of distortions have been tested. Since high reliability is more important than accuracy in financial applications, we introduce three rejection schemes of first rank measurement (FRM), first two ranks measurement (FTRM) and linear discriminant analysis based measurement (LDAM). All the classifiers and classifier combination schemes are combined with different rejection criteria. A novel cascade rejection measurement achieves 100% reliability with less rejection rate compared with the existing methods. Experimental results show that MQDF reaches the accuracy of 99.59% using the gradient direction feature trained with gray level normalized data; the cascade classifier combination achieves the best performance of 99.67%. The distortions have been proved to be very helpful because the performances of CNNs boost at least 0.5% by training with transformed samples. With the cascade rejection method, 100% reliability has been obtained by rejecting 1.01% test samples. & 2014 Elsevier Ltd. All rights reserved.
منابع مشابه
Bank Automation System for Indian Currency A Graphical Approach
The serial numbers are currency issuance numbers, which are used as the identifiers (IDs) of the banknotes. Each sheet has its own serial numbers and the same numbers cannot be used more than once. Correctly and fast recognizing these numbers is very important due mainly to at least the three reasons. Firstly, there is a need for proper statistics by the national treasuries and the banks. Befor...
متن کاملImproving the performance of MFCC for Persian robust speech recognition
The Mel Frequency cepstral coefficients are the most widely used feature in speech recognition but they are very sensitive to noise. In this paper to achieve a satisfactorily performance in Automatic Speech Recognition (ASR) applications we introduce a noise robust new set of MFCC vector estimated through following steps. First, spectral mean normalization is a pre-processing which applies to t...
متن کاملOn the use of Textural Features and Neural Networks for Leaf Recognition
for recognizing various types of plants, so automatic image recognition algorithms can extract to classify plant species and apply these features. Fast and accurate recognition of plants can have a significant impact on biodiversity management and increasing the effectiveness of the studies in this regard. These automatic methods have involved the development of recognition techniques and digi...
متن کاملDimensionality Reduction and Improving the Performance of Automatic Modulation Classification using Genetic Programming (RESEARCH NOTE)
This paper shows how we can make advantage of using genetic programming in selection of suitable features for automatic modulation recognition. Automatic modulation recognition is one of the essential components of modern receivers. In this regard, selection of suitable features may significantly affect the performance of the process. Simulations were conducted with 5db and 10db SNRs. Test and ...
متن کاملA Database for Automatic Persian Speech Emotion Recognition: Collection, Processing and Evaluation
Abstract Recent developments in robotics automation have motivated researchers to improve the efficiency of interactive systems by making a natural man-machine interaction. Since speech is the most popular method of communication, recognizing human emotions from speech signal becomes a challenging research topic known as Speech Emotion Recognition (SER). In this study, we propose a Persian em...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Pattern Recognition
دوره 47 شماره
صفحات -
تاریخ انتشار 2014